Low Level Operations and Learning in Computer Vision
نویسنده
چکیده
This thesis presents some concepts and methods for low level computer vision and learning, with object recognition as the primary application. An efficient method for detection of local rotational symmetries in images is presented. Rotational symmetries include circle patterns, star patterns, and certain high curvature patterns. The method for detection of these patterns is based on local moments computed on a local orientation description in double angle representation, which makes the detection invariant to the sign of the local direction vectors. Some methods are also suggested to increase the selectivity of the detection method. The symmetries can serve as feature descriptors and interest points for use in hierarchical matching structures for object recognition and related problems. A view-based method for 3D object recognition and estimation of object pose from a single image is also presented. The method is based on simple feature vector matching and clustering. Local orientation regions computed at interest points are used as features for matching. The regions are computed such that they are invariant to translation, rotation, and locally invariant to scale. Each match casts a vote on a certain object pose, rotation, scale, and position, and a joint estimate is found by a clustering procedure. The method is demonstrated on a number of real images and the region features are compared with the SIFT descriptor, which is another standard region feature for the same application. Finally, a new associative network is presented which applies the channel representation for both input and output data. This representation is sparse and monopolar, and is a simple yet powerful representation of scalars and vectors. It is especially suited for representation of several values simultaneously, a property that is inherited by the network and something which is useful in many computer vision problems. The chosen representation enables us to use a simple linear model for non-linear mappings. The linear model parameters are found by solving a least squares problem with a non-negative constraint, which gives a sparse regularized solution.
منابع مشابه
Computer assisted instruction during quarantine and computer vision syndrome
Computer vision syndrome (CVS) is a set of visual, ocular, and musculoskeletal symptoms that result from long-term computer use. These symptoms include eyestrain, dry eyes, burning, pain, redness, blurred vision, etc, which increase with the duration of computer use. Currently, with the closure of schools and universities due to the continued COVID19 pandemic many universities have taken the pr...
متن کاملLogical Vision: Meta-Interpretive Learning for Simple Geometrical Concepts
Progress in statistical learning in recent years has enabled computers to recognize objects with near-human ability. However, recent studies have revealed particular drawbacks in current computer vision systems which suggest there exist considerable differences between the way these systems function compared with human visual cognition. Major differences are that: 1) current computer vision sys...
متن کاملOperation Sequencing Optimization in CAPP Using Hybrid Teaching-Learning Based Optimization (HTLBO)
Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product incr...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملApplication Of The Schema Mechanism To Learning Visual Tasks
This thesis describes the construction of a system which learns to perform a class of useful operations, visual tasks, on high-resolution two-dimensional binary images, using a learning algorithm based on Drescher's Schema Mechanism [Dre91]. The system is composed of two major components; a synthetic visual system, and the Schema Mechanism learning system(Section 2). The synthetic visual system...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کامل